ANTERIOR

SIGUIENTE

IMPRESORAS DE INYECCIÓN

 

 

Descripcion de los tipos de impresoras mas importantes

Impresoras de inyección de tinta.

 

El descubrimiento de esta tecnología fue fruto del azar. Al acercar accidentalmente el soldador, por parte de un técnico, a un minúsculo cilindro lleno de tinta, salió una gota de tinta proyectada, naciendo la inyección de tinta por proceso térmico. La primera patente referente a este tipo de impresión data del año 1951, aunque hasta el año 1983, en el que Epson lanzó la SQ2000, no fueron lo suficientemente fiables y baratas para el gran público.

Actualmente hay varias tecnologías, aunque son muy pocos los fabricantes a nivel mundial que las producen, siendo la mayoría de ellas de un mismo fabricante con una marca puesta por el que las vende. Canon (que le proporciona las piezas a Hewlett Packard) y Olivetti son los más importantes dentro de este tipo.

El fundamento físico es similar al de las pantallas de vídeo. En lugar de transmitir un haz de electrones se emite un chorro de gotas de tinta ionizadas que en su recorrido es desviado por unos electrodos según la carga eléctrica de las gotas. El carácter se forma con la tinta que incide en el papel. Cuando no se debe escribir, las gotas de tinta se desvían hacia un depósito de retorno, si es de flujo contínuo, mientras que las que son bajo demanda, todas las usadas con los PC´s, la tinta sólo circula cuando se necesita. Los caracteres se forman según una matriz de puntos. Estas impresoras son bidireccionales y hay modelos que imprimen en distintos colores.

Un ejemplo de aplicación de la impresión con tinta es el marcado de lote y fecha de caducidad en botellas de leche. Este proceso se efectúa con el sistema de impresión mediante circulación continúa Los equipo de marcado de botellas sufren una degradación progresiva en la tinta que contienen, debida al proceso tecnológico de funcionamiento. el sistema de circulación continúa de tinta provoca que una partícula de tinta pase por el cabezal impresor gran cantidad de veces antes de ser proyectada. La tinta al sufrir presión, entrar en contacto con el aire y sufrir la carga de las placas electrostáticas pierde propiedades eléctricas, se evapora parte del disolvente y sufre contaminación debida al polvo y humedad del aire. Este sistema incorpora un viscosímetro que controla la cantidad de disolvente que la tinta pierde al entrar en contacto con el aire y la compensa añadiendo aditivo, que además de disolvente añade sales y otros elementos para recuperar la tinta.

La contaminación que la tinta sufre con el contacto del aire, provoca peor calidad de impresión, llegando un momento en el que hay que cambiar la tinta. El equipo incorpora un depósito central de cambio fácil e instantáneo que avisa con 24 horas de antelación al momento de sustitución. El depósito central incorpora el filtro principal de tinta, con lo que se cambia sin intervención cada vez que se repone el depósito.

 

 

Impresoras de un cartucho

Muchas de las impresoras más baratas tienen espacio para sólo un cartucho. Se puede usar un cartucho de tinta negra para impresión monocromática, o un cartucho de tinta CMY para impresión a color, pero no se puede usarlos a ambos al mismo tiempo. Esto hace una gran diferencia en la operación de la impresora.

Cada vez que se quiera cambiar de blanco y negro a color, se debe físicamente cambiar los cartuchos. Cuando se usa negro en una página a color, éste estará hecho con los tres colores lo que dará como resultado un insatisfactorio verde oscuro o gris usualmente conocido como negro compuesto. De todas maneras, el negro compuesto producido por las impresoras actuales es mucho mejor que lo que era hace unos pocos años, a causa del continuo avance en la química de las tintas.

 

Tinta

Cualquiera sea la tecnología aplicada a una impresora (hablando de las impresoras de inyección de tinta), el producto final consiste en tinta sobre papel, así que estos dos elementos son de vital importancia cuando se trata de producir resultados de calidad. La calidad de salida de las impresoras de inyección de tinta va de pobre, con los colores bandeándose, a excelente, cercano a la calidad fotográfica.

Dos tipos enteramente diferentes de tinta son usadas en impresoras de inyección: una es lenta y penetrante y toma alrededor de diez segundos en secar, y la otra es una tinta de secado rápido, la cual seca aproximadamente 100 veces más rápido que la anterior. La primera es generalmente mejor para impresión monocromática, mientras que la última es usada para la impresión a color. En la impresión a color, a causa de que diferentes tintas son mezcladas, éstas necesitan secarse lo más rápido posible para evitar la distorsión. Si es usada tinta de secado lento para impresión a color, los colores tienden a correrse y mezclarse (bleeding) antes de secarse.

La tinta usada en la impresión a inyección es basada en agua y esto trae otros problemas. Los resultados de algunas de las primeras impresoras de inyección tenían un alto riesgo de mancharse y correrse, pero en los últimos años ha habido un enorme avance en la química de las tintas. Las tintas basadas en aceite no son realmente una solución al problema, debido que elevarían demasiado los costos de mantenimiento del hardware. Los fabricantes están haciendo continuos progresos en el desarrollo de tintas resistentes al agua, pero los resultados de las impresoras de inyección son todavía débiles frente a las láser.

Uno de los mayores objetivos de los fabricantes de impresoras de inyección, es desarrollar la habilidad de imprimir sobre cualquier medio. El secreto de esto es la química de las tintas, y la mayoría de los fabricantes cuidan celosamente sus fórmulas. Compañías como Hewlett-Packard, Canon y Epson invierten grandes sumas de dinero en investigación para hacer continuos avances en los pigmentos.

Las impresoras de inyección de hoy usan tintes basados en pequeñas moléculas (menores a 50 nm), para las tintas cian, magenta y amarilla. Éstas tienen alto brillo y una amplia gama de colores, pero no son lo suficientemente resistentes a la luz o al agua. Los pigmentos basados en moléculas más grandes (50 a 100 nm), son más resistentes, pero no pueden entregar los mismos colores y no son transparentes. Esto significa que los pigmentos son actualmente usados solo para la tinta negra. Desarrollos futuros se concentrarán en crear tintas CMY resistentes al agua y a la luz basadas en moléculas más pequeñas.

 

Papel

La mayoría de las impresoras actuales de inyección requieren papel de alta calidad, satinado o cuche para la producción de salida con realismo fotográfico, y esto puede ser muy caro. Una de las últimas proclamas de los fabricantes es hacer la impresión a color, independientemente del medio, y el logro de esta meta es generalmente medido por la calidad de la impresión en un papel de copia vulgar. Esto ha sido vastamente mejorado de unos años a esta parte, pero el papel satinado o cuche es todavía necesario para lograr calidad fotográfica. Algunos fabricantes, como Epson, también son propietarios de su propia marca de papel, que está optimizada para su uso con la tecnología piezo-eléctrica, también de su propiedad.

Las impresoras de inyección pueden volverse caras cuando los fabricantes intentan vender sus propios consumibles. El papel producido por compañías independientes es mucho más barato que el que es proveído directamente por los fabricantes de impresoras, pero tratan de ser aptos para todos los modelos y marcas de impresoras, haciendo que raramente se aprovechen las ventajas de las características de un modelo de impresora en particular.

Un gran acuerdo en la investigación ha sido la producción de papel de tipo universal, que está optimizado específicamente para impresoras de inyección. El papel Plus Colour Jet, producido por Wiggins Teape, es papel recubierto (coated) producido específicamente para la tecnología de inyección, y el Conqueror CX22 está diseñado para documentos de negocios en tinta negra y toques de color. Este está optimizado tanto para las impresoras de inyección como para las láser.

El papel pre-acondicionado busca mejorar la calidad de la inyección en el papel vulgar preparándolo para recibir la tinta con un agente que amarra pigmento al papel, reduciendo la ganancia de punto y el manchado. Lo interesante de este esfuerzo es tratar de lograrlo sin tener que incurrir en un esfuerzo dramático de performance. Si esta técnica resulta, una de las más grandes barreras para el uso generalizado de la tecnología de inyección habrá sido removida.

Consumibles para impresoras láser

La mayoría de las láser usan tecnología de cartucho basado en un tambor orgánico fotoconductivo (OPC), recubierto por material sensitivo a la luz. Durante la vida útil de la impresora, el tambor necesita ser reemplazado periódicamente porque su superficie se deteriora, como así también, su calidad de impresión. El cartucho es otro gran item a ser tenido en cuenta, su vida útil depende de la cantidad de tóner que contenga. Cuando el tóner se agota, el cartucho es reemplazado. A veces el cartucho de tóner y el OPC están en compartimientos separados, pero en el peor de los casos, el tambor está localizado dentro del cartucho. Esto significa que cuando el tóner se agota, el tambor entero conteniendo el OPC y el cartucho necesita ser cambiado, lo que aumenta considerablemente sus costos operativos y produce grandes desperdicios.

La situación es todavía peor con una láser color - que puede tener actualmente más de nueve consumibles separados (cuatro tóners a color, un tambor OPC, una unidad desarrolladora, el fundidor o fuser, el aceite para el fuser, y el compartimiento de tóner de desecho). Muchos de estos deben ser ajustados cuando la impresora es seteada, y todos se agotan después de un número variable de páginas, dependiendo del fabricante y del uso. El gran número de componentes es la razón más poderosa para justificar su costo y la falta general de usabilidad y manejabilidad de las láser color, y la reducción de este número es una meta a lograr por los fabricantes.

Algunos han tratado de mejorar la situación haciendo los tambores más durables y eliminando todos los consumibles exceptuando el tóner. Kyocera, fue el primer fabricante en producir una impresora "cartridge-free" (sin cartucho) que usa un tambor de silicon amorfo. El tambor tiene una capa muy robusta que dura lo que dura la vida útil de la impresora, así que el único consumible que requiere reemplazo regular es el tóner y hasta éste viene en un envoltorio hecho por un plástico no tóxico, diseñado para ser incinerado sin producir gases dañinos.

 

 

Otras Tecnologías

Tinta sólida.  Sublimación de Tinta.  Autocromo.  Cera Térmica.

Tinta Sólida

Comercializada casi exclusivamente por Tektronix, las impresoras de tinta sólida son impresoras de página completa que usan varillas de tinta encerada sólida en un proceso "phase-change" (cambio de fase). Trabajan licuando las varillas en depósitos, y luego volcando la tinta dentro de un tambor de transferencia, desde donde es fusionada en frío en el papel en una sola pasada.

Estas impresoras están hechas para ser dejadas encendidas en un área segura y compartidas a través de una red, para este fin vienen con puertos Ethernet, paralelo y SCSI permitiendo una conexión para cualquier necesidad.

Las impresoras de tinta sólida son generalmente más baratas que una láser color de especificaciones similares, y además Tektronix tiene la política de dar la tinta negra gratis. La calidad de impresión es buena, con puntos multinivel soportados por modelos "high-end", o de alta calidad de salida, pero generalmente la calidad no es tan buena como las mejores láser color para texto y gráficos, o las mejores de inyección de tinta para fotografías. La resolución comienza en unos 300 dpi nativos, llegando a un máximo de 850 x 450 dpi. La velocidad color típica es de 4 ppm en el modo estándar, llegando a 6 ppm en el modo de resolución reducida.

Su conectividad, sus costos relativamente bajos y el hecho de que son capaces de usar una amplia variedad de medios de cualquier tecnología de impresión a color, las hace una buena opción para el uso en negocios generales y algunas tareas de especialistas como la impresión de transparencias a alta velocidad y en gran formato.

Fig. 11. Funcionamiento de una impresora de tinta sólida.

Fig. 12. Sublimación de tinta

Sublimación de Tinta

Las impresoras de sublimación de tinta son dispositivos especializados ampliamente usados en aplicaciones fotográficas y de artes gráficas. Estas impresoras trabajan calentando la tinta hasta convertirla en gas. El elemento térmico puede generar diferentes temperaturas, lo que permite controlar la cantidad de tinta que es ubicada en una mancha. En la práctica, esto significa que el color es aplicado como un tono continuo más que como puntos.

Un color por vez es depositado en toda la hoja, comenzando con el amarillo y terminando con el negro. La tinta forma largos rollos de película, las cuales contienen hojas de cada color, así que la impresión de una hoja A4 tendrá una hoja del tamaño A4 de amarillo, seguida de una hoja de cian, una de magenta y una de negro. La sublimación de tinte requiere de un papel especial particularmente caro, y los tintes están diseñados para difuminarse en la superficie del papel, mezclándose para crear sombras de colores precisas. La velocidad de impresión es lenta, típicamente entre 0.25 y 0.5 ppm.

Hoy en día algunas impresoras de inyección del mercado que utilizan técnicas de sublimación de tinta. La forma en la cual las impresoras de inyección usan la tecnología difiere de una de sublimación verdadera, es que en las primeras la tinta está en cartuchos, los cuales pueden cubrir la página de a una franja por vez. También calientan la tinta para generar un gas, controlado por el elemento térmico que alcanza temperaturas superiores a los 500° C (más alto que el promedio de las impresoras de sublimación de tinte). La técnica Micro Dry empleada en las impresoras Alps es un ejemplo de esta tecnología híbrida. Estos dispositivos operan en una resolución que va de los 600 a 1200 dpi, y con algunos, los cartuchos estándar pueden ser cambiados por unidades con tinta especial para fotos para lograr la mejor calidad fotográfica.

Autocromo

El proceso de impresión thermo autochrome (TA), el cual es considerablemente más complejo que el láser o el de inyección de tinta, ha emergido recientemente en impresoras comercializadas como dispositivos de compañía, para ser usadas con cámaras digitales. El papel TA contiene tres capas de pigmento, - cian, magenta, amarillo - cada uno sensitivo a una temperatura en particular. De estos pigmentos, el amarillo tiene la sensitividad a la temperatura más baja, luego el magenta, seguido por el cian. La impresora está equipada con un cabezal térmico y uno ultravioleta y el papel pasa entre ellos tres veces. En la primer pasada es selectivamente calentado a la temperatura necesaria para activar el pigmento amarillo, el cual es fijado por el ultravioleta antes de pasar al próximo color (magenta). Aunque la última pasada (cian) no es seguida de un fijado ultravioleta, el resultado final es más durable que con la tecnología de sublimación de tinte.

Cera térmica

La cera térmica es otra tecnología especializada - muy similar a la de sublimación de tinte - preparada para imprimir transparencias. Usan

cilindros CMY o CMYK conteniendo paneles del tamaño de la página de película plástica recubierta con colorantes basados en cera. Trabajan derritiendo puntos de tinta - generalmente binarios aunque algunos modelos "high-end" son capaces de producir puntos en multinivel - en un papel térmico especial.

La resolución y la velocidad de impresión son bajas - típicamente 300 dpi y alrededor de 1 ppm - reforzando la característica de esta tecnología de ser utilizada por aplicaciones especializadas.

Fig. 13. Cera Térmica

 

Impresoras de Inyección de tinta

 Características generales.  Operación. Cabezal de Impresión. Drop on Demand.  Tecnología térmica. Descripción de su funcionamiento.  Tecnología Piezoeléctrica. Descripción de su funcionamiento  El costo oculto.  Impresoras de un cartucho.

Características Generales

Aunque las impresoras de inyección de tinta estaban disponibles en la década del 80, fue sólo en la de los 90 cuando los precios cayeron, lo suficiente, para llevar a estas impresoras a ocupar un lugar importante en el mercado. Ya existen modelos a menos de U$S 100, y muchas ellas compiten con las láser en calidad de texto y producen imágenes con calidad fotográfica.

El concepto de las impresoras de inyección de tinta es sencillo (arrojar tinta líquida sobre el papel) pero en realidad dependen de una tecnología muy avanzada, a pesar de sus precios accesibles.

Operación

La impresión de inyección de tinta, como la impresión láser, es un método de no-impacto. La tinta es emitida por boquillas que se encuentran en el cabezal de impresión. El cabezal de impresión recorre la página en franjas horizontales, usando un motor para moverse lateralmente, y otro para pasar el papel en pasos verticales. Una franja de papel es impresa, entonces el papel se mueve, listo para una nueva franja. Para acelerar las cosas, la cabeza impresora no imprime sólo una simple línea de pixeles en cada pasada, sino también una línea vertical de pixeles a la vez.

Por lo general, las impresoras de inyección de tinta actuales tienen resoluciones de 600 dpi o más altas, y la velocidad de impresión se aproxima a la de las láser al imprimir en blanco y negro. Una impresora de inyección de tinta rápida puede producir una imagen a todo color de 8 x 10 pulgadas y a 300 dpi en 2 a 4 minutos. Esto significa que produce 7.2 millones de puntos en un tiempo de 120 a 240 segundos, o de 30.000 a 60.000 puntos por segundo. El cabezal de impresión de una impresora típica tiene 64 boquillas para cada color, cada una de las cuales debe ser capaz de activarse y desactivarse a velocidades tan elevadas como 900 veces por segundo, lo cual es sorprendente por tratarse de un dispositivo mecánico.

Cuando surgieron las impresoras de inyección de tinta, los cabezales de impresión estaban diseñados para emitir una corriente continua de diminutas gotas de tinta. Las gotas tenían carga eléctrica estática y se "mezclaban" en el papel o en un depósito de reciclaje por medio de campos cargados. Este procedimiento era deficiente y muy poco preciso. En la actualidad, las impresoras de inyección de tinta dependen de la tecnología de gotas según la demanda. DOD (Drop on Demand) que producen pequeñas gotas cuando se necesitan. Son dos los métodos que utilizan las impresoras de inyección de tinta para lograr que las gotas se arrojen con rapidez: térmico y piezoeléctrico.

Tecnología térmica

Una de las leyendas de la tecnología de las computadoras explica cómo se inventó la impresora de inyección de tinta térmica. Un ingeniero experimentaba con fórmulas de tinta y había cargado algunas en una jeringa. Por accidente, la aguja tocó la punta caliente de un cautín, y salió una diminuta gota de tinta. Canon reclama haber inventado esta tecnología, a la que llamó Bubble Jet, en 1977.

El chorro es iniciado calentando la tinta para crear una burbuja que genera una presión que la fuerza a emerger y golpear el papel. Luego la burbuja colapsa y el vacío resultante arrastra nueva tinta hacia la recámara para reemplazar a la que fue expulsada. Éste es el método favorito de Canon y Hewlett-Packard

Fig. 4. Principio de la tecnología de inyección de tinta térmica.

Diminutos elementos calentadores son usados para expulsar gotitas de tinta desde las boquillas del cabezal

de impresión, estas boquillas tienen un tamaño aproximado al de un cabello humano (aprox. 70 micras,

siendo una micra la millonésima parte de un metro) y expulsan gotas de aproximadamente 8/10 picolitros y puntos de aproximadamente 50 a 60 micras de diámetro. La gota más pequeña que el hombre puede ver a simple vista es de aproximadamente 30 micras, de modo que estas gotas se acercan a los límites de nuestra percepción.

El tamaño increíblemente pequeño de estas gotas posibilita incrementar la resolución del trabajo de impresión. Se requiere de una gota de casi 35 micras para crear una impresión de 720 dpi, de modo que estas gotas se superponen ligeramente en esa resolución.

Los tintes basados en tintas cian, magenta y amarillo son normalmente presentadas vía un cabezal CMY. Algunas gotas pequeñas de tinta de diverso color, usualmente entre 4 y 8, pueden ser combinadas para generar un punto de tamaño variable, una paleta de colores más grande y semitonos más suaves. La tinta negra que es generalmente basada en moléculas más grandes de pigmento, es generada por una cabeza separada con volúmenes de gota de alrededor de 35 picolitros.

La velocidad de impresión es fundamentalmente una función de la frecuencia con la que las boquillas pueden disparar la tinta y el ancho de la franja impresa por el cabezal de impresión. Usuamente es de alrededor de 12.5 MHZ por pulgada, dando velocidades de impresión entre 4 y 8 ppm para texto blanco y negro y de 2 a 4 ppm para texto color y gráficos.

Tecnología Piezoeléctrica

La tecnología piezoeléctrica es una estrategia alternativa, desarrollada por Epson, a la tecnología bubble jet o térmica.

Los cristales piezoeléctricos tienen una propiedad única y singular. Si se aplica una fuerza física en ellos, pueden generar una carga eléctrica. El proceso también funciona a la inversa: aplique una carga eléctrica al cristal y podrá hacer que se mueva, creando una fuerza mecánica.

La cabeza de impresión de una impresora de inyección de tinta piezoeléctrica utiliza un cristal en la parte posterior de un diminuto depósito de tinta. Una corriente se aplica al cristal, lo que lo atrae hacia adentro. Cuando la corriente se interrumpe, el cristal regresa a su posición original, y una pequeña cantidad de tinta sale por la boquilla. Cuando la corriente se reanuda, atrae al cristal hacia atrás y lanza la siguiente gota.

Esta estrategia tiene algunas ventajas. Las cabezas de impresión piezoeléctricas pueden utilizar tinta que se seca con mayor rapidez y pigmentos que podrían dañarse con las temperaturas en una cabeza térmica. Asimismo, como un cabezal piezoeléctrico está integrado a la impresora, sólo se necesita reemplazar el cartucho de tinta. (las impresoras térmicas incluyen las boquillas en cada cartucho de tinta, lo que incrementa el costo del cartucho y, por lo tanto, el costo por página.) El inconveniente es que si una cabeza piezoeléctrica se daña o atora, es necesario reparar la impresora.

Fig. 7. Cabezal Piezoeléctrico

Las últimas impresoras más importantes de Epson tienen cabezales de tinta negra con 128 boquillas y cabezales color (CMY) con 192 boquillas (64 para cada color) logrando una resolución de 720 dpi. Como el proceso piezoeléctrico puede producir puntos pequeños y perfectamente formados con gran eficacia, Epson puede ofrecer una resolución aumentada de 1440 x 720 dpi. Esto es logrado por el cabezal haciendo dos pasadas, con una consecuente reducción en la velocidad de impresión. Las tintas que Epson ha desarrollado para aprovechar esta tecnología son extremadamente rápidas para secarse, penetran el papel y mantienen su forma haciendo que los puntos interactúen unos con otros.

El resultado es muy buena calidad fotográfica especialmente con el papel adecuado.

 

ANTERIOR

SIGUIENTE